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Calculations of Rydberg energy levels for Ni XVIII using
the weakest bound electron potential model theory
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Martin expression about the quantum defect of single-valence atoms is extended to many-valence atoms
by identifying the weakest bound electron (WBE) under the weakest bound electron potential model
(WBEPM) theory. Six Rydberg series energy levels of 2p6np2P ◦

1/2 (n ≥ 3), 2p6np2P ◦
3/2 (n ≥ 3), 2p6nd2D3/2

(n ≥ 3), 2p6nd2D5/2 (n ≥ 3), 2p6nf2F ◦
5/2 (n ≥ 4), and 2p6nf2F ◦

7/2 (n ≥ 4) for Ni XVIII are calculated by
this method. The calculated results are in good agreement with the experimental results.

OCIS codes: 020.0020, 020.5780.

Recently, atom and ion spectra research, especially en-
ergy level and radiactive lifetime in high Rydberg states,
is playing a more and more important role with the high-
tech development in astrophysics, laser physics, physi-
cal chemistry, and nuclear fusion. Corresponding mea-
surement and computation techniques are developing
quickly[1−3]. In respect of theoretical methods, the pre-
sentation and development of quantum defect theory
(QDT) provides a feasible way to calculate the high Ry-
dberg state. For example, the multichannel quantum
defect theory (MQDT) has made great achievements in
Rydberg spectrum analysis for atoms and ions[4,5]. How-
ever, there are too many parameters to be fitted in
MQDT, and its computing process is rather complex.
The weakest bound electron potential model (WBEPM)
theory[6−9] developed in recent years is a simple and
effective method for calculating Rydberg state energy
levels. In WBEPM theory, if one can categorize the elec-
trons in atoms or ions into the weakest bound electron
(WBE) and non-weakest bound electron (NWBE), ap-
propriate Rydberg state energy level series could be ex-
tracted. Moreover, single-valance electron system prob-
lems can be translated into many-valance electron ones.
Then, Martin expression[10] can be extended to calcu-
late Rydberg state energy levels for complicated atoms
or ions with many-valance electrons. In this paper, based
on WBEPM theory, the Rydberg series energy levels
2p6np2P ◦

1/2 (n ≥ 3), 2p6np2P ◦
3/2 (n ≥ 3), 2p6nd2D3/2

(n ≥ 3), 2p6nd2D5/2 (n ≥ 3), 2p6nf2F ◦
5/2 (n ≥ 4), and

2p6nf2F ◦
7/2 (n ≥ 4) of Ni XVIII are calculated, and the

results agree well with experimental values.
For alkali atoms and alkali-like ions, their energy lev-

els and spectral terms can generally be written as (in
Rydberg unit)

En = − 1
(n − δ)2

= − 1
n∗2 , (1)

T =
R

(n − δ)2
=

R

n∗2 , (2)

where δ is the quantum defect, representing the pene-
trating interaction between the valance electron and the

atomic core; δ is approximately a function of angular-
momentum quantum number l for alkali atoms; n is the
principal quantum number, and n∗ = n−δ is the effective
principal quantum number. For the given series l, n∗ is
a function of n, and R is the Rydberg constant.

In WBEPM theory, all the extranuclear electrons of
atoms (or ions) can be categorized into either WBE or
NWBE. WBE is such an electron that has the weakest
connect with the system among all electrons. So it is
also the most active electron that is excited or ionized
most easily in the system. When WBE is excited, it
will form various electronic configurations. For a given
configuration series, their energy level is only a function
of the principal quantum number n[7], and the relation-
ship between the energy level values of atomic system
and the effective parameters of WBE can be expressed
as

T =
RZ ′2

n′2 , (3)

where Z ′ is the effective nuclear-charge number of WBE,
representing a stronger interaction between WBE and
the atomic core (such as orbital penetration); n′ is the
effective principal quantum number of WBE, represent-
ing a weaker interaction between them (such as atomic
core polarization). In QDT, atomic (or ionic) energy level
is often denoted by spectral term, which is

T = Tlimit − RZ ′2

n′2 , (4)

where Tlimit is the ionization limit of the corresponding
spectral series.

In terms of WBE, if we attribute all the interactions
between WBE and atomic core to the change of effective
principal quantum number, the concept of quantum de-
fect will be applied to WBEPM theory through transfor-
mation

Z ′

n′ =
Znet

n∗ =
Znet

(n − δ)
, (5)

where Znet refers to the net nuclear-charge number of
atomic core (for atom: Znet = 1), and n∗ = n′

Z′ Znet,
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δ = n − n∗ refers to the quantum defect number. Then
Eq. (4) becomes

T = Tlimit − RZ2
net

(n − δ)2
. (6)

In QDT, Martin[10] expanded δ to an infinite series and
reserved the former four terms, namely Martin expression
becomes

δ = a + bm−2 + cm−4 + dm−6, (7)

and m = n − δ0, δ = n − n∗, (8)

where δ0 is the quantum defect number of the lowest en-
ergy level in a given Rydberg state series; a, b, c, and d
are the fitted spectral coefficients. Due to the restric-
tion of experimental condition, there is generally lack of
the lowest energy level in measurement of Rydberg state
energy levels for atoms (or ions). However, if we replace
the lowest energy level in Eq. (8) by the lowest one in the

experimental energy levels, we can calculate the regular-
ities of Rydberg series energy levels for atoms (or ions)
through Eqs. (6) − (8).

The six Rydberg spectral series energy levels of Ni
XVIII 2p6np2P ◦

1/2 (n ≥ 3), 2p6np2P ◦
3/2 (n ≥ 3),

2p6nd2D3/2 (n ≥ 3), 2p6nd2D5/2 (n ≥ 3), 2p6nf2F ◦
5/2

(n ≥ 4), and 2p6nf2F ◦
7/2 (n ≥ 4) are calculated with

Eqs. (6)− (8). The coefficients a, b, c, d in Eq. (7) fitted
with experimental data from Ref. [1] are listed in Table
1. The calculated values using WBEPM and the experi-
mental values of each energy series, namely Tcal and Texp,
are all listed in Tables 2 − 4, respectively. In order to
compare with other theoretical calculations, the energy
values TDHF calculated by Ray[1] using fully relativistic
Dirac-Hatree-Fock (DHF) method are also listed in Ta-
bles 2 − 4. The values for calculating Tcal are 109736.29
cm−1 for R and 4896200 cm−1 for Tlimit

[11].
Tables 2− 4 show that our results are very close to the

experimental data with a relative deviation generally no

Table 1. Spectral Coefficients of the Six Energy Level Series for Ni XVIII by
Fitting the Experimental Values in Martin Expression

Configuration a b c d δ0

2p6np2P ◦
1/2 (n ≥ 3) 0.204286 −0.356076 7.94682 −35.2052 0.215102

2p6np2P ◦
3/2 (n ≥ 3) 0.181306 0.310052 −1.64013 5.54423 0.205761

2p6nd2D3/2 (n ≥ 3) 0.0717042 −0.0950856 1.70001 −11.1222 0.0661464

2p6nd2D5/2 (n ≥ 3) 0.0650764 0.0939157 −0.594257 −2.22785 0.0644936

2p6nf2F ◦
5/2 (n ≥ 4) 0.00839609 −0.0692479 4.17243 −54.2438 0.00708246

2p6nf2F ◦
7/2 (n ≥ 4) 0.0209116 −1.1979 33.9513 −296.05 0.00631232

Table 2. Theoretical and Experimental Energy
Values of 2p6np2P◦

1/2,3/2 (cm−1)

n
2p6np2P ◦

1/2 2p6np2P ◦
3/2

Texp Tcal TDHF Texp Tcal TDHF

3 311860 311861 313143 342460 342460 344286

4 2426120 2426120 2424615 2438130 2438130 2436914

5 3352440 3352440 3324793 3358070 3358070 3354612

6 3839360 3839360 3361489 3843200 3843200 3839044

7 4127299 3974221 4130149 4152017

8 4311742 4173434 4313899 4309601

9 4436978 4438632

10 4525888 4527173

11 4591276 4592287

12 4640761 4641567

13 4679111 4679763

14 4709432 4709965

15 4733818 4734259

16 4753723 4754091

17 4770180 4770491

18 4783943 4784207

19 4795568 4795795

20 4805477 4805673

Table 3. Theoretical and Experimental Energy
Values of 2p6nd2D3/2,5/2 (cm−1)

n
2p6nd2D3/2 2p6nd2D5/2

Texp Tcal TDHF Texp Tcal TDHF

3 765550 765550 768810 770200 770200 773807

4 2594350 2594576 2593328 2596490 2596442 2595583

5 3433540 3433406 3430231 3434600 3434663 3431407

6 3885590 3885078 3881446 3886050 3886069 3882130

7 4155060 4155787 4125839 4156630 4156558 4125449

8 4330990 4330727 4326902 4331290 4331321 4327192

9 4450271 4450730

10 4535558 4535917

11 4598529 4598812

12 4646341 4646567

13 4683495 4683678

14 4712938 4713089

15 4736666 4736791

16 4756068 4756172

17 4772134 4772222

18 4785588 4785662

19 4796966 4797030

20 4806675 4806730
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Table 4. Theoretical and Experimental Energy
Values of 2p6nf 2F ◦

5/2,7/2 (cm−1)

n
2p6nf2F ◦

5/2 2p6nf2F ◦
7/2

Texp Tcal TDHF Texp Tcal TDHF

4 2666150 2666150 2664120 2667010 2667010 2664921

5 3468980 3468981 3465837 3469300 3469238 3466250

6 3905760 3905759 3901817 3905980 3906104 3902057

7 4168880 4168881 4164748 4169020 4168918 4164900

8 4339530 4339530 4335386 4339330 4339360 4335487

9 4456466 4456206

10 4540080 4539798

11 4601929 4601657

12 4648960 4648711

13 4685555 4685333

14 4714588 4714393

15 4738008 4737837

16 4757173 4757024

17 4773055 4772925

18 4786363 47862497

19 4797625 47975256

20 4807240 48071523

more than 1.75 × 10−2%. Further, our accuracy is bet-
ter than Ray’s[1]. The largest deviation is in 2p67d2D3/2

level, and the main reason is that there may be some per-
turbation states near the level. The much higher energy
levels, in comparison with experimental values unavail-
able, are predicted in the tables mentioned above. Con-
sidering the high accuracy of the foregoing calculated val-
ues, our forecasted values are reliable. The results prove
that the extended Martin expression is suitable for the

spectral series of the many-valence electron Ni XVIII.
In conclusion, this paper provides an effective way for

calculating the Rydberg state energy levels for Ni XVIII,
whose computing process is both compact and accurate
and needs fitting few parameters. Meanwhile, it also
provides a new idea in studying the Rydberg spectra for
other many-valence electron atoms.
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